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Abstract 

Bed based ballistocardiography (BCG) is a prime 

candidate for at home and nighttime monitoring especially 
in the growing elderly population because co-operation 

from the user is not required to be able to record signals. 

One issue with BCG is that the signal quality has intra- 

and inter-person variability based on factors such as age, 

gender, body position, and motion artifacts, making it 

challenging to accurately measure heart rate. 

A rule-based algorithm which considers all eight 

available BCG channels simultaneously from a given time 

epoch was developed using continuous wavelet transform 

(CWT) to extract the localized time-frequency 

representation of each epoch and then an averaging 
method was applied across the different scales of the CWT 

to produce a 1-dimensional array. Autocorrelation was 

then applied to this array to produce a heart rate estimate 

based on the lag between the autocorrelation maximum 

and the first side peak. This method does not require 

identification of individual heart beats to estimate heart 

rate and does not require annotated training data. 

This model produces an average mean absolute error 

(MAE) of 1.09 bpm across 40 subjects when compared to 

heart rate derived from ECG. This method produces 

competitive results without the need for annotated training 

data, which can be challenging to collect. 
 

1. Introduction 

In the United States non-invasive wearables are a part 

of a $700 billion direct to consumer health care industry 

[1]. Despite the evidence pointing to the benefits of 

wearable health devices, only about 3.3% of users of 

wearable devices in the US are 65 years old or older [2]. 
This could be due to a number of reasons, such as lack of 

knowledge of wearable health technology, costs associated 

with such technology, or the perceived or actual difficulty 

in using wearables depending on an individual’s physical 

and mental abilities [3]. A possible alternative to wearable 

health technology for heart rate monitoring is non-invasive 

ballistocardiography (BCG). Ballistocardiography is 

defined as a measure of the ballistic forces generated by 

the heart. This is measured by the movement of the body 

produced by the recoil force produced from the aorta by 

blood passing through it. An advantage of bed based BCG 

is that it requires no real user input from a subject outside 

the initial set up of the device. This is advantageous for 

patient groups that suffer from diseases that affect the 
memory or dexterity which also happen to become more 

common as individuals age. This also allows for truly long 

term multiyear remote measurements, which medical 

grade wearable patches are unable to provide because of 

device limitations. Other options such as implantable loop 

recorders can be invasively implanted under the skin but 

are only able to take recordings of a few minutes in 

duration at a time [4].  

Different methods of heart rate detection from BCG 

signals have been proposed using time domain or time-

frequency domain approaches such as template 

matching[5], continuous wavelet transform (CWT) based 
peak detection [5], as well as machine learning based 

approaches [6]. Some of the drawbacks of these methods 

such as requiring annotated data to train a model [6] can be 

challenging when considering long-term measurements, 

where it may be impractical to collect enough time synced 

ECG data which would allow for correct beat labeling. 

Template matching may also prove to be challenging when 

we consider the fact that the morphology of a BCG 

waveform can vary from subject to subject as well as 

within one subject’s recording because of changes in body 

position during the course of one recording [7]. 
In this study, we provide a simple method that requires 

no training data and does not require the identification of 

individual heart beats from the BCG signal to accurately 

estimate heart rate. We believe that the proposed method 

could be used across different sensing configurations 

because it is not dependent on any dataset specific 

properties. This method can be used as a baseline heart rate 

estimate for BCG signals when developing methods that 

are more sophisticated when there is a lack of annotated 

heart rate data or external ECG data to compare heart rate 

estimates to. The proposed method is tested on a 40 

subjects taken from an open dataset [8] against heart rate 
estimates produced by a single lead ECG that is time 

synced with the BCG signals.  
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2. Methods and Materials 

Figure 1 gives an overview of the overall data 

processing pipeline used in this study to evaluate the 

custom bed system compared to signal lead ECG. 

 

 

Figure 1: Overall pipeline of proposed method 

 

2.1. Dataset 

The dataset used in this study is an open access dataset  

from Carson et al. [8] describing a custom-made bed based 
BCG system. The dataset contains ECG, PPG, blood 

pressure waveforms as well as eight channels of BCG 

waveform recordings from two different types of BCG 

sensors from 40 subjects (17 males, mean age 34 +/- 15 

years). In this study only the BCG and ECG waveforms 

were considered. Four electomechanical films placed 

under the mattress and four load cells placed under the 

bedposts recorded the eight channels of BCG waveforms. 

The participants were instructed to lay in the same supine 

position. More information about the bed system, such as 

sensor locations and data collection procedures can be 

found in [8]. 
 

2.2. Signal processing 

The ECG and BCG signals were originally captured 

using a 1 kHz sampling rate. Both signals were first low-

pass filtered with a 4th order Butterworth filter with a cut-

off frequency value of 100 Hz before down sampling to 

200 Hz. For each channel of the newly down sampled BCG 
signals, a 4th order Butterworth bandpass filter was applied 

with cut of frequencies of 5 and 35 Hz. The signals were 

subtracted by their mean value then normalized by 

dividing each channel by its standard deviation. The ECG 

signal was high pass filtered using a 5th order Butterworth 

filter with a cutoff frequency of 0.5 Hz. This was 

performed using the default parameters from the ecg_clean 

function from the NeuroKit2 python library. All the signal 

processing was performed in python using the open source 

SciPy and NeuroKit2 libraries. No other preprocessing 

methods such as motion artifact removal was applied to the 
ECG and BCG signals in order to determine the algorithms 

capability during noisy segments present in the recordings.  

 

2.3. CWT Multi-Scale Averaging and Heart 

Rate Estimation using Autocorrelation 

 In order to reliably extract heart rate estimates from the 

BCG signal, the signals were first segmented into 4-second 

segments to be processed individually. Figure 2 below 

shows a typical 4-second segment from one subject 

featuring BCG signal from one of the sensors used in the 
bed monitoring system. 

 

 
 

Figure 2: Example 4-second segment of ECG and BCG signals 

from dataset used in this study. 

After the BCG signals were filtered and segmented, a 

CWT using a morlet wavelet is applied individually to each 

channel of BCG signal. The following steps outline the 

algorithmic steps of producing a 1-dimensional time series 

array from a given CWT from one BCG signal channel.  

 
1. Before applying the CWT, we allow the length of the 

given BCG signal segment to be extended one second 
on both sides of the segment. After application of the 
CWT to the now 6-second segment, the first and last 
second will later be discarded to reduce any boundary 
effects produced by the CWT. 

2. The scales of the CWT are selected to represent 
frequencies between 5 and 35 Hz with a scale spacing 
of 0.1. 

3. After the CWT is produced, an averaging function is 
applied across all scales for each time sample in the 
CWT. 

4. A 100ms time window is centered around each time 
sample t and then the mean value is computed for each 

s-by-w matrix, where s represents all scales between 5 
and 35 Hz and w represents time samples centered 
around t. 

5. The output of this function is a 1-D array, CWT1-D, 
where each sample represents the mean of each s-by-w 
matrix considered. 

6. CWT1-D is then normalized between 1 and 0 and then a 
gradient function is applied creating CWT1-D Gradient. 

7. After which, a rolling median filter is applied to CWT1-D 

Gradient with a window of 100ms to further smooth the 
signal. The signal is re-normalized between 1 and 0 
creating CWT1-D Clean 
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8.  The first and last second of CWT1-D Clean is then 
discarded to produce the final 4-second segment. 
  

After step eight, the autocorrelation of CWT1-D Clean is 

computed resulting in an autocorrelation curve from which 

a heart rate estimate is found using the difference in time 

between the zero-point and the first side peak in the 

autocorrelation curve. This measure was inspired by the 

work done in [9] proposed earlier to extract heart rate from 

seismocardiographs using an autocorrelation curve. Other 

autocorrelation based methods have also been proposed for 

different BCG bed sensor systems such as [10]. Figure 3 
below shows plots of the algorithm at different stages using 

the 4-second BCG segment in Figure 2.  

 

 
 

Figure 3: Visualization of algorithm steps to produce a heart rate 

estimate. 

From Figure 3 we see the steps taken from a filtered 

BCG signal segment to the resulting CWT, from which the 

CWT1-D Clean is extracted. The autocorrelation curve 

produced from CWT1-D Clean produces a heart rate estimate 

of 89.0 bpm from the distance shown between the red 

markers. For this example, the bpm estimate produced 

from the ECG R-peak locations in figure 2 was 90.56 bpm. 
This process is repeated for each of the eight BCG channels 

recorded by the bed sensor system to produce eight 

different heart rate estimates for each channel for each 4-

second segment. With eight heart rate estimates per time 

epoch, a method is needed to select the optimal heart rate 

estimate for each time epoch.   

 

2.3. Periodicity Check 

In order to accurately estimate the heart rate, a rule-

based method is considered. First periodicity of each 

autocorrelation curve produced from the eight channels of 

BCG is checked. This is done by considering the maximum 

difference in the differences between peak locations 

detected in the autocorrelation curves represented in 

equation 1.  

 

𝑀𝑎𝑥(|𝐷𝑖𝑓𝑓(𝐷𝑖𝑓𝑓( PeakLocations ))|) 

(1) 

For a given autocorrelation curve, if the result of 

equation 1 is greater than 20 samples at sampling 

frequency of 200 Hz or 100ms, the resulting 

autocorrelation curve is consider non-periodic, meaning 

that the heart rate produced by the channels autocorrelation 

curve cannot be considered as a reliable heart rate estimate. 
Figure 4 below shows an example of two auto correlation 

curves.   

 

 
 

 Figure 4: Example of Periodic and Non-Periodic 

autocorrelation curves. 

From Figure 4, the distance between peaks varies 
greatly in a non-periodic segment compared to the periodic 

segment in green. This non-periodic segment could be 

caused by either poor sensor contact to the body or motion 

artifacts in the signal. For this given time epoch, the true 

heart rate estimate produced by the ECG R-peaks is 58.82. 

The periodic window produced a heart rate estimate of 

58.25 bpm while the non-periodic window produced an 

estimate of 117.64 bpm. The value of 100ms was selected 

as a cut off because it can be seen as a representation of 

heart rate variability (HRV). As the target population for 

this type of monitoring system would be elder subjects, a 

100 ms threshold was seen as reasonable because HRV 
tends to decrease with age and is on average less than 100 

ms during sinus rhythm in elderly populations [11].  

 

2.4. BCG Channel Selection 

Figure 5 below shows the logic used to select the 

optimal heart rate estimate for each 4-second segment. A 

reference heart rate value was created by taking the median 
HR found within all periodic segments from the BCG 

channel that contained the maximal amount of periodic 

segments defined as BCGMaxPeri in Figure 5. This decision 

was made because of the relative short length of recordings 

across the 40 subjects, which were on average 7 minutes in 

length. For recordings that are multiple hours long, it is 

suggested that a reference HR is created by windowing the 

total recording into smaller segments of 5 minutes for 

example. This is because heart rate fluctuations can occur 

for example during different stages of Non-REM and REM 
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sleep [12]. By applying this method to shorter local 

windows of time, better time resolution for the estimation 

of heart rate can be produced when using a local reference 

heart rate.    

 

 
 

Figure 5: Logic used during BCG channel selection to produce 

accurate heart rate estimates. 

 

3. Model Evaluation and Results 

The algorithm presented in section 2 was applied to all 

40 subjects individually. The first second and last four 
seconds of each recording was omitted from analysis 

because of the windowing required in the proposed 

method. When producing the heart rate estimates from the 

single lead ECG recordings, an R-peak detection algorithm 

was selected from the NeuroKit2 library. The method 

selected is from Kalidas et al. [13]. This method was 

selected over the typical Pan-Tompkin R-peak detection 

method because it provided more accurate R-peak 

detection results when visually inspecting the ECG signals 

for R-peak detection errors. A heart rate estimate for each 

4-seconds segment was produced by the proposed 

algorithm and the R-peak locations found within the given 
4-second segment. The mean absolute error (MAE) was 

then calculated across the two heart rate estimation arrays 

and a result was then produced. This method produced an 

average MAE of 1.09 bpm across the 40 subjects with the 

minimum MAE being 0.33 bmp and the maximum MAE 

being 3.35 bpm.  

 

4. Conclusion 

The proposed method produced on average a MAE of 

1.09 bpm when compared to heart rate estimates produced 

form ECG R-peak detection. This method is significant 

because it does not require any annotated training data nor 

identification of individual heart beats to produce a reliable 

heart rate estimate. This method can prove to be a baseline 
heart rate estimator in the presence of data captured with 

no true reference signal such as single lead ECG. Some 

limitations of this study are a limited number of subjects 

(n=40) and a relatively short average record length of 7 

minutes.  
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